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Visual & Trajectory

Feather floats gently down in a
quiet meadow.

A single soap bubble floating gently and rising amidst a field of blooming wildflowers.

Two roses, one purple, one yellow, sway together before a snow-covered mountain range.

Maple leaf trembles above a clear 
lake, reflecting the autumn forest.

Two yellow lanterns gracefully lift 
into the night sky above the park.

A red helium balloon floating slowly up to the sky over a desert.

Figure 1: Tora is capable of generating videos guided by trajectories, images, texts, or combinations thereof. Leveraging the
scalability of DiT, the generated movement not only adheres precisely to the trajectory but also effectively emulates physical
world dynamics. Notably, when generating videos at a 720p resolution, Tora maintains stable motion control for up to 204
frames. Due to limited space, we summarize the captions. Highly recommend viewing videos in project page.

Abstract

Recent advancements in Diffusion Transformer (DiT)
have demonstrated remarkable proficiency in producing
high-quality video content. Nonetheless, the potential of
transformer-based diffusion models for effectively generating
videos with controllable motion remains an area of limited
exploration. This paper introduces Tora, the first trajectory-
oriented DiT framework that concurrently integrates textual,
visual, and trajectory conditions, thereby enabling scalable
video generation with effective motion guidance. Specifi-
cally, Tora consists of a Trajectory Extractor (TE), a Spatial-
Temporal DiT, and a Motion-guidance Fuser (MGF). The TE
encodes arbitrary trajectories into hierarchical spacetime mo-
tion patches with a 3D video compression network. The MGF
integrates the motion patches into the DiT blocks to generate
consistent videos that accurately follow designated trajecto-
ries. Our design aligns seamlessly with DiT’s scalability, al-
lowing precise control of video content’s dynamics with di-
verse durations, aspect ratios, and resolutions. Extensive ex-
periments demonstrate Tora’s excellence in achieving high

*These authors contributed equally.

motion fidelity, while also meticulously simulating the intri-
cate movement of the physical world.

Introduction
Diffusion models (Dhariwal and Nichol 2021; Ramesh et al.
2022) have demonstrated their capability to generate di-
verse and high-quality images or videos. Previously, video
diffusion models (Ho et al. 2022b; Blattmann et al. 2023;
Zhang et al. 2023a) predominantly employed U-Net archi-
tectures (Olaf Ronneberger 2015), focusing primarily on
synthesizing videos of limited duration, typically around
two seconds, and were constrained to fixed resolutions
and aspect ratios. Recently, Sora (Brooks et al. 2024), a
text-to-video generation model leveraging Diffusion Trans-
former (DiT) (Peebles and Xie 2023), has showcased video
generation capabilities that significantly outstrip current
state-of-the-art methods. Sora excels not only in the produc-
tion of high-quality videos ranging from 10 to 60 seconds,
but also distinguishes itself through its capacity to handle
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A joyful brown puppy turns its head happily while playing on a green grassy field.

On a bright, sunny day, two adorable kittens walk side by side along the golden sands of a serene beach.

A crucian carp swims gracefully across the red, rocky surface of Mars.

A flock of seagulls soars gracefully through the vibrant underwater world filled with colorful coral reefs.

A sleek sports car races along a mountain road as snowflakes gradually fall, slowly covering the entire path.

A dynamic aerial shot showcasing a mountain waterfall cascades down in the early morning light.

Figure 2: More generated samples. Tora accommodates diverse conditions such as text-only inputs, single starting frames, and
combinations of initial and final frames (as illustrated in the fifth row). It effectively manages multiple trajectories, allowing for
precise manipulation of several objects. Furthermore, Tora supports video generation across different aspect ratios, resolutions,
and durations, ensuring flexible content creation. For video demonstrations, please refer to our project page.

diverse resolutions, various aspect ratios, adherence to the
laws of actual physics.

Video generation requires consistent motion across image
sequences, underscoring the importance of motion control.
Previous works, such as VideoComposer (Wang et al. 2023)
and DragNUWA (Yin et al. 2023), have implemented gen-
eralized motion manipulation through motion vectors and

trajectories. Building on this foundation, MotionCtrl (Wang
et al. 2024b) innovates by independently managing cam-
era and object motions, thereby expanding the diversity of
achievable motion patterns. Despite their promising control-
lable motion quality, U-Net methods are restricted to gener-
ating videos of only 16 frames at a fixed, lower resolution.
This limitation hinders the smooth portrayal of motion, par-
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ticularly during significant positional shifts in the provided
trajectory, leading to distortion and unnatural movements,
such as parallel drifting, which diverge from real-world dy-
namics. Consequently, there is an urgent need for a model
capable of producing longer videos with robust motion con-
trol and detailed physical representations.

To address these challenges, we present Tora, the first
DiT model that simultaneously integrates text, images, and
trajectories, enabling scalable video generation with robust
motion control. Notably, our work adopts OpenSora (Zheng
et al. 2024), an open-source version of Sora, as the founda-
tional DiT model. To align motion control with the scalabil-
ity of the DiT framework, we propose two novel modules:
the Trajectory Extractor (TE), which converts arbitrary tra-
jectories into hierarchical spacetime motion patches, and the
Motion-guidance Fuser (MGF), designed to seamlessly in-
tegrate these patches within the stacked DiT blocks. More
specifically, TE initially converts positional displacements
along trajectory into the RGB domain via flow visualization
techniques. These visualized displacements undergo Gaus-
sian filtering to mitigate scattered issues. Subsequently, a 3D
Variational Autoencoder (VAE) (Kingma and Welling 2013)
encodes trajectory visualizations into spacetime motion la-
tents, which share the same latent space with video patches.
The motion latents are then decomposed into multiple lev-
els of motion conditions via stacked lightweight modules.
Our VAE architecture is inspired by MAGVIT-v2 (Yu et al.
2023b) but simplified by foregoing codebook dependencies.
The MGF integrates adaptive normalization layers (Perez
et al. 2018) to infuse multi-level motion conditions into the
corresponding DiT blocks. We explored various adaptations
of transformer blocks including adaptive layer normaliza-
tion, cross-attention, and extra channel connections to inject
the motion conditions. Among these, adaptive layer normal-
ization emerged as the most effective to generate consistent
videos following trajectory.

During training, we adapt OpenSora’s workflow to gener-
ate high-quality video-text pairs and utilize an optical flow
estimator (Xu et al. 2023) for trajectory extraction. We also
integrate a motion segmentor (Zhao et al. 2022) with a cam-
era detector1 to filter out instances dominated by camera mo-
tion, thereby improving our tracking of specific object tra-
jectories. This careful selection process results in a dataset
of 630k high-quality videos with consistent motion. With an
adapter-like strategy (Mou et al. 2024), we solely train the
temporal blocks, together with the TE and MGF. This strat-
egy seamlessly integrates DiT’s inherent generative knowl-
edge with external motion signals.

The main contributions of our work are as follows:
• We introduce Tora, the first trajectory-oriented DiT

model for scalable video generation with strong motion
guidance. As illustrated in Figure 2, Tora seamlessly in-
tegrates various text, visual and trajectory instructions,
enabling the creation of motion-manipulable videos.

• We propose a novel trajectory extractor and a motion-
guidance fusion mechanism to facilitate motion control
that aligns with the scalability of DiT. Additionally, we
1https://github.com/antiboredom/camera-motion-detector

ablate several architecture choices and offer empirical
baselines for future research.

• Experiments demonstrate that Tora is capable of gener-
ating 720p resolution videos with varying aspect ratios,
extending up to 204 frames, all guided by the specified
trajectories. Furthermore, it demonstrates superiority in
simulating movements within the physical world.

Related Work
Diffusion models for Video Generation
Diffusion models have demonstrated an impressive capa-
bility to generate high-quality video samples. Previous re-
search (Ho et al. 2022b,a; Singer et al. 2022; Khachatryan
et al. 2023; Zhang et al. 2023b) commonly used video
diffusion models (VDMs) that incorporated temporal con-
volutional and attention layers into the pre-trained image
diffusion models. Subsequently, VideoCrafter (Chen et al.
2023) and SVD (Blattmann et al. 2023) expand the appli-
cation of video diffusion models to larger datasets, while
TF-T2V (Wang et al. 2024a) directly learn from extensive
text-free videos. Nonetheless, these methods encounter lim-
itations in generating long videos, owing to the inherent con-
straints on capacity and scalability within the U-Net design.
Conversely, DiT-based models (Brooks et al. 2024; Zheng
et al. 2024; Bao et al. 2024) can directly generate videos
extending up to tens of seconds. Sora (Brooks et al. 2024)
converts visual data into a unified representation, facilitating
large-scale training and enabling the generation of 1-minute
high-definition video. Vidu (Bao et al. 2024) is capable of
generating both realistic and imaginative videos in various
aspect ratios and resolutions. For our study, we adopt Open-
Sora (Zheng et al. 2024) as the foundational model, which is
an open-source alternative to Sora.

Motion control in Video Generation
To better control motion in generated video, a multitude of
studies have endeavored to introduce diverse motion signals
in VDMs. Pioneering works like MotionDirector (Zhao et al.
2023) and VMC (Jeong, Park, and Ye 2024) have utilized
reference videos to extract motion patterns applicable to di-
verse video generations. VideoComposer (Wang et al. 2023)
expands upon this by adopting depth maps, sketches, or mo-
tion vectors from references as conditional inputs for motion
control. Nonetheless, these methodologies are limited to re-
producing existing motion patterns. Conversely, approaches
that leverage trajectories or bounding boxes (Yin et al. 2023;
Dai et al. 2023; Wang et al. 2024b) in video generation
promise greater adaptability and user accessibility. Drag-
NUWA (Yin et al. 2023) breaks new ground by integrating
trajectory-based conditioning into VDMs, facilitating com-
plex camera and object movements. AnimateAnything (Dai
et al. 2023) employs motion masks for precise control over
the moving regions. TrailBlazer (Wan-Duo Kurt Ma 2023),
employs explicit attention mechanisms to maneuver gener-
ated objects along precise trajectories. MotionCtrl (Wang
et al. 2024b) facilitates more flexible control, allowing sep-
arate adjustment of both camera movements and individual
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Figure 3: Overview of the Tora Architecture. We introduce two novel modules: the Trajectory Extractor and the Motion-
guidance Fuser. The Trajectory Extractor uses a 3D motion VAE to embed trajectory vectors into the same latent space as video
patches, preserving motion information across frames. It then employs stacked convolutional layers to extract hierarchical mo-
tion features. The Motion-guidance Fuser utilizes adaptive normalization layers to integrate these multi-level motion conditions
into the corresponding DiT blocks, ensuring that generated videos consistently follow defined trajectories. Our method lever-
ages the scalability of DiT, enabling the creation of motion-controllable videos of extended duration.

object motions. However, all of them yield noticeable ar-
tifacts in both motion consistency and visual presentation
when applied to longer sequences. In contrast, our method
first integrates trajectories into DiT architecture, specifically
designed to accommodate scaling properties. This enables
closer adherence to the physical world.

Methodology
Preliminary
Latent Video Diffusion Model (LVDM). The LVDM en-
hances the stable diffusion model (Ramesh et al. 2022) by
integrating a 3D U-Net, thereby empowering efficient video
data processing. This 3D U-Net design augments each spa-
tial convolution with an additional temporal convolution and
follows each spatial attention block with a corresponding
temporal attention block. It is optimized employing a noise-
prediction objective function:

lϵ = ||ϵ− ϵθ(zt, t, c)||22, (1)

Here, ϵθ(·) signifies the 3D U-Net’s noise prediction func-
tion. The condition c is guided into the U-Net using cross-
attention for adjustment. Meanwhile, zt denotes the noisy
hidden state, evolving like a Markov chain that progressively
adds Gaussian noise to the initial latent state z0:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (2)

where ᾱt =
∏t

i=1(1 − βt) and βt is a coefficient that con-
trols the noise strength in step t.
Diffusion Transformer (DiT). The DiT (Peebles and Xie
2023) introduces a novel architecture that merges the

strengths of diffusion models with transformer architec-
tures (Vaswani et al. 2017). This integration aims to address
the limitations of traditional U-Net-based latent diffusion
models (LDMs), improving their performance, versatility,
and scalability. While keeping the overall framework con-
sistent with existing LDMs, the key shift lies in replacing
the U-Net with a transformer architecture for learning the
denoising function ϵθ(·), thereby marking a pivotal advance
in the realm of generative modeling.

Tora
Tora employs the Spatial-Temporal Diffusion Transformer
(ST-DiT) from OpenSora as its foundational model. To fa-
cilitate user-friendly motion control while aligning with
the scalability of DiT, Tora integrates two novel motion-
processing components: the Trajectory Extractor (TE) and
the Motion-guidance Fuser (MGF). An overview of Tora’s
workflow is illustrated in Figure 3.
Spatial-Temporal DiT. The ST-DiT architecture incorpo-
rates two distinct block types: the Spatial DiT Block (S-
DiT-B) and the Temporal DiT Block (T-DiT-B), arranged
in an alternating sequence. The S-DiT-B comprises two at-
tention layers, each performing Spatial Self-Attention (SSA)
and Cross-Attention sequentially, succeeded by a point-wise
feed-forward layer that serves to connect adjacent T-DiT-B
block. Notably, the T-DiT-B modifies this schema solely by
substituting SSA with Temporal Self-Attention (TSA), pre-
serving architectural coherence. Within each block, the in-
put, upon undergoing normalization, is concatenated back to
the block’s output via skip-connections. By leveraging the
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ability to process variable-length sequences, the denoising
ST-DiT can handle videos of variable durations.

During processing, a video autoencoder (Yu et al. 2023a)
is first employed to diminish both spatial and temporal di-
mensions of videos. To elaborate, it encodes the input video
X ∈ RL×H×W×3 into video latent z0 ∈ Rl×h×w×4, where
L denotes the video length and l = L/4, h = H/8, w =
W/8. z0 is next “patchified”, resulting in a sequence of in-
put tokens I ∈ Rl×s×d. Here, s = hw/p2 and p denotes the
patch size. In both SSA and TSA, standard Attention is per-
formed using Query (Q), Key (K), and Value (V) matrices:

Q = WQ ·Inorm;K = WK ·Inorm;V = WV ·Inorm, (3)

Here, Inorm is the normalized I , WQ,WK ,WV are learn-
able matrices. The textual prompt is embedded with a T5
encoder and integrated using a cross-attention mechanism.
Trajectory Extractor. Trajectories have proven to be a
more user-friendly method for controlling the motion of
generated videos. Specifically, given a trajectory traj =

{(xi, yi)}L−1
i=0 , where (xi, yi) denotes the spatial position

(x, y) at the i-th frame the trajectory passes through. Previ-
ous studies primarily encode the horizontal offset u(xi, yi)
and the vertical offset v(xi, yi) as the motion condition:

u(xi, yi) = xi+1 − xi; v(xi, yi) = yi+1 − yi, (4)

However, the DiT model employs a video autoencoder and
a patchification process to convert the video into patches.
Here, each patch is derived across multiple frames, render-
ing it inappropriate to straightforwardly employ frame-to-
frame offsets. To address this, our TE converts the trajectory
into motion patches, which inhabit the same latent space
as the video patches. Particularly, we begin by transform-
ing the traj into a trajectory map g ∈ RL×H×W×2, en-
hanced with a Gaussian Filter to mitigate scatter. Notably,
the first frame employs a fully-zero map. Afterward, the tra-
jectory map g is translated into the RGB color space, pro-
ducing gvis ∈ RL×H×W×3 through a flow visualization
technique. We use a 3D VAE to compress trajectory maps,
achieving an 8x spatial and 4x temporal reduction, align-
ing with OpenSora framework. Our 3D VAE is based on
the Magvit-v2 architecture, with spatial compression initial-
ized using the VAE of SDXL (Podell et al. 2023) to acceler-
ate convergence. We train the model using only reconstruc-
tion loss to obtain the compact motion latent representation
gm ∈ Rl×h×w×4 from the gvis.

To match the size of the video patches, we use the same
patch size on gm and encode it using a series of convolu-
tional layers, resulting in spacetime motion patches f ∈
Rl×s×d′

. Here d′ is the dimension of motion patches. The
output of each convolutional layer is skip-connected to the
input of the next layer to extract multi-level motion features:

fi = Convi (fi−1) + fi−1, (5)

where fi is the motion condition for i-th ST-DiT block.
Motion-guidance Fuser. To incorporate DiT-based video
generation with the trajectory, we explore three variants of
fusion architectures that inject motion patches into each ST-
DiT block. These designs are illustrated in Figure 4.

Temporal
Self-

Attention

MLP

Cross-AttentionAdaptive NormExtra Channel

Scale, ShiftMLP

Concatenation Layer Norm MLP MLP

Cross-Attention

Temporal
Self-

Attention

Temporal
Self-

Attention

Figure 4: Different designs of the Motion-guidance Fuser
for incorporating trajectory conditioning. Adaptive Norm
demonstrates the best performance.

- Extra channel connections. Denote hi ∈ Rl×s×d as the
resultant output from the i-th block of the ST-DiT. Fol-
lowing the widespread use of concatenation in GAN-
based LVDM, the motion patches are simply concate-
nated with the previous hidden state hi−1 along the chan-
nel dimension. An additional convolution layer is then
added to maintain the same latent size:

hi = Conv ([hi−1, fi]) + hi−1, (6)

- Adaptive Norm layer. Inspired by the adaptive normal-
ization layers employed in GANs, we initially convert fi
into scale γi and shift βi by adding two zero-initialized
convolution layers into the ST-DiT block. Subsequently,
γi and βi are integrated into hi through a straightforward
linear projection:

hi = γi · hi−1 + βi + hi−1, (7)

- Cross-Attention layer. The ST-DiT block has been mod-
ified to include an additional Cross-Attention layer fol-
lowing the SSA or TSA, with the motion patches serving
as the key and value to integrate with the hidden state h:

hi = CrossAttn ([hi−1, fi]) + hi−1, (8)

We evaluate three types of fusion architectures and find
that the adaptive norm yields the best performance and com-
putational efficiency. For the remainder of the paper, MGF
employs the adaptive norm layer unless otherwise specified.

Data Processing and Training Strategy
Data Processing. We employ a structured data processing
method to obtain high-quality training videos with consis-
tent object motion. Initially, raw videos are segmented into
shorter clips based on scene detection2. Subsequently, we re-
move invalid videos, such as those with encoding errors, a
duration of zero, and low resolution. Furthermore, we utilize
aesthetic3 and optical flow scores (Xu et al. 2023) to filter out

2https://github.com/Breakthrough/PySceneDetect
3https://github.com/christophschuhmann/improved-aesthetic-
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Method FVD (↓) CLIPSIM (↑) TrajError (↓)

16-frame 64-frame 128-frame 16-frame 64-frame 128-frame 16-frame 64-frame 128-frame

VideoComposer (Wang et al. 2023) 529 668 856 0.2335 0.2284 0.2236 15.11 29.14 58.76
DragNUWA (Yin et al. 2023) 475 593 784 0.2385 0.2341 0.2305 10.04 17.33 41.25

AnimateAnything (Dai et al. 2023) 487 602 775 0.2399 0.2342 0.2313 13.39 27.28 51.33
TrailBlazer (Wan-Duo Kurt Ma 2023) 459 581 756 0.2403 0.2351 0.2322 11.68 19.47 44.10

MotionCtrl (Wang et al. 2024b) 463 572 731 0.2412 0.2376 0.2331 9.42 16.46 38.39
Tora(Ours) 438 460 494 0.2447 0.2435 0.2418 7.23 8.45 11.72

Table 1: Quantitative comparisons with state-of-the-art motion-controllable video generation models. As the number of gener-
ated frames increases, Tora demonstrates a growing performance advantage over the UNet-based methods, maintaining a high
degree of stability in trajectory control.

low-quality videos. To concentrate on the motion of primary
objects, we implement camera motion filtering, using results
from motion segmentation (Zhao et al. 2022) and camera de-
tection to exclude instances predominantly exhibiting cam-
era movement. Dramatic object motions in certain videos
can lead to significant optical flow deviations, which may
interfere with trajectory training. To address this, we retain
these videos based on a probability of (1 − score/100).
For eligible videos, we generate captions using the PLLaVA
model (Xu et al. 2024). During inference, we utilize GPT-
4o (OpenAI 2023) to refine prompts, ensuring alignment
with training process for consistency. More detailed infor-
mation about the filtering and the refinement process can be
found in the supplementary materials.
Motion condition training. Inspired by DragNUWA and
MotionCtrl, we adopt a two-stage training approach for tra-
jectory learning. In the first stage, we extract dense optical
flow (Xu et al. 2023) from the training video as the trajec-
tory, providing richer information to enhance motion learn-
ing. In the second stage, we adjust the model from complete
optical flow to more user-friendly trajectories by randomly
selecting 1 to N object trajectories based on motion seg-
mentation results and flow scores. To improve the scattered
nature of sparse trajectories, we apply a Gaussian filter for
refinement. After completing the two-stage training, Tora fa-
cilitates flexible motion control using arbitrary trajectories.
Image condition training. We follow the mask strategy em-
ployed by OpenSora to support visual conditioning. Specif-
ically, we randomly unmask frames during training, and the
video patches of the unmasked frames are not subjected to
any noise. This enables our Tora model to seamlessly inte-
grate text, images, and trajectories into a unified model.

Experiments
Experimental Setup
Implementation Details. Tora is initialized with OpenSora
v1.2 weights, and training videos have resolutions from
144p to 720p and frame counts ranging from 51 to 204.
To balance training FLOP and memory usage, we adjust the
batch size from 1 to 50. We use Adam Optimizer (Kingma
and Ba 2015) with a learning rate of 2×10−5 on 4 NVIDIA
A100. The 3D VAE in TE is initially trained on datasets
(Mehl et al. 2023; Mayer et al. 2016; Ranjan et al. 2020;
Cabon, Murray, and Humenberger 2020) annotated with op-

tical flow and then frozen during Tora training. We train
Tora for 2 epochs with dense optical flow and fine-tune for
1 epoch with sparse trajectories. The maximum number of
sampling trajectories N is set to 16. The inference step and
the guidance scale are set to 30 and 7.0, respectively.
Dataset. Our training videos are sourced from three
datasets: 1) Panda-70M (Chen et al. 2024), from which we
use the training-10M subset containing high-quality videos;
2) Mixkit (Envato 2024); and 3) Internal videos. The inter-
nal videos are manually annotated, with each clip labeled
to include object masks and camera movement. Following
our data processing pipeline, we select about 630k eligible
videos for the training dataset. For inference, we curate 185
clips with diverse motion trajectories and scenes, to serve as
a new benchmark for evaluating the motion controllability.
Metrics. We leverage standard metrics such as Fréchet
Video Distance (FVD) (Unterthiner et al. 2018), and CLIP
Similarity (CLIPSIM) (Wu et al. 2021) to quantitatively
evaluate video quality. For assessing motion controllability,
we leverage Trajectory Error (TrajError), which computes
the average distance between the generated and pre-defined
trajectories. Human evaluation is also introduced in supple-
mentary materials due to space limitations.

Results
We compare our method with popular motion-guided video
generation approaches in three settings: 16, 64, and 128
frames, all at a resolution of 512 × 512 for a fair evalua-
tion. The provided trajectories are adjusted to fit the differ-
ent video lengths. For most U-Net-based methods, we use
sequenced inference, where the last frame generated from
one batch serves as the visual condition for the next, align-
ing with their inference strategies. As shown in Table 1, in
the 16-frame setting typical for U-Net methods, MotionC-
trl and DragNUWA align better with the provided trajecto-
ries but still fall short compared to our proposed Tora. With
an increasing number of frames, U-Net methods exhibit sig-
nificant deviations, leading to misalignment errors that re-
sult in deformations, motion blur, or object disappearance
in later sequences. In contrast, Tora remains highly robust
across varying frame counts due to the transformer’s scaling
abilities. In the 128-frame test setting, Tora’s trajectory ac-
curacy surpasses other methods by 3 to 5 times, showcasing
its outstanding motion control capabilities. Figure 5 presents
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Figure 5: Comparison of Trajectory Error across various res-
olutions and durations. Unlike U-Net models, our method
maintains motion control with a gradual increase in error.

an analysis of Trajectory Error across different resolutions
and durations. Unlike U-Net models, which exhibit substan-
tial trajectory errors over time, Tora shows only a gradual
increase in error as duration extends. This aligns with the
decrease in video quality observed in the DiT model. The re-
sults demonstrate that our method effectively maintains tra-
jectory control over longer durations.

Ablation study
We conduct several ablation studies to analyze the effects
of our design choices. All models are evaluated using 480p
resolution, a 16:9 aspect ratio, and 204 frames.
Trajectory Compression. To integrate the trajectory vec-
tor into the same latent space as video patches, we explore
three different methods for trajectory compression, as sum-
marized in Table 2. The first method samples the mid-frame
as a keyframe for successive 4-frame intervals and uses
patch-unshuffle for spatial compression. While simple, this
approach is sub-optimal for motion control due to poten-
tial flow estimation errors during rapid movements or occlu-
sions, and the increased dissimilarity between patches com-
plicates learning. The second method employs average pool-
ing to gather information from successive frames. Although
this captures a general sense of movement, it sacrifices pre-
cision by averaging the trajectory’s direction and magnitude,
diluting important motion details. To better preserve trajec-
tory information between consecutive frames, we utilize a
3D VAE to extract the global context of successive trajec-
tory intervals. The trajectory data is converted into RGB im-
ages to leverage existing 3D VAE weights. Extensive train-
ing on a large dataset of trajectory videos with this method
yields the best results, highlighting the effectiveness of our
customized 3D VAE approach for trajectory compression.

Method FVD (↓) CLIPSIM (↑) TrajError (↓)

Sampling Frame 581 0.2304 27.61
Average Pooling 558 0.2325 20.97

3D VAE 513 0.2358 14.25

Table 2: Evaluations of the impact of different trajectory
compression methods.

Block design and integrated position of MGF. We train
the three variant MGF blocks as previously described, with
the results presented in Table 3. Notably, the adaptive norm
block achieves lowest FVD and Trajectory Error, while also
exhibiting the highest computational efficiency. This advan-
tage stems from its ability to dynamically adapt features
based on varying conditions without needing strict align-
ment, a common challenge with cross-attention. Addition-
ally, it maintains temporal consistency by modulating con-
ditional information over time, which is essential for incor-
porating motion cues. In contrast, channel concatenation can
lead to information congestion, making motion signals less
effective. We find that initializing the normalization layer as
the identity function is vital for optimal performance. Addi-
tionally, placing the MGF module within the Temporal DiT
block significantly enhances trajectory motion control, evi-
denced by a drop in Trajectory Error from 23.39 to 14.25.

Method FVD (↓) CLIPSIM (↑) TrajError (↓)

Extra Channel 542 0.2329 21.07
Cross Attention 526 0.2354 18.36
Adaptive Norm 513 0.2358 14.25

Table 3: Different variants of motion fusion blocks em-
ployed in MGF. Adaptive Norm works best.

Training Strategies. We evaluate the two-stage training ap-
proach, with results in Table 4. Training only with dense
optical flow is ineffective, as it fails to capture the details
of sparse trajectories. Conversely, using only sparse trajec-
tories provides limited information, complicating the learn-
ing process. By first training with dense flows and then fine-
tuning with sparse trajectories, our model demonstrates bet-
ter adaptability and versatility in managing various motion
patterns, leading to improved overall performance.

Motion-guidance FVD (↓) CLIPSIM (↑) TrajError (↓)

Dense Flow 601 0.2307 39.34
Sparse Flow 556 0.2334 24.73

Hybrid 513 0.2358 14.25

Table 4: Ablation of the type of training trajectories. “Hy-
brid” denotes the two-stage training strategy.

Conclusion
This paper introduces Tora, the first trajectory-oriented Dif-
fusion Transformer framework for video generation. Tora ef-
fectively encodes arbitrary trajectories into spacetime mo-
tion patches, which align with the scaling properties of
DiT, thereby enabling more realistic simulations of physi-
cal world movements. By employing a two-stage training
process, Tora achieves motion-controllable video generation
across a wide range of durations, aspect ratios, and resolu-
tions. Remarkably, it can generate high-quality videos that
adhere to specified trajectories, producing up to 204 frames
at 720p resolution. This capability underscores Tora’s ver-
satility and robustness in handling diverse motion patterns



DragNUWA

Ours

MotionCtrl

Two men cycled on the highway under a clear, sunny sky Two red lanterns sway in the
wind under the serene night sky

Figure 6: Qualitative Comparisons on Trajectory Control. All methods are capable of generating objects that follow the given
trajectory. However, Tora not only adheres precisely to the specified trajectory but also produces smoother movement that
conforms to the physics world.

while maintaining high visual fidelity. We hope our work
provides a strong baseline for future research in motion-
guided Diffusion Transformer methods.

Appendix
This supplementary material offers additional results,

comprehensive dataset information, and thorough analyses
that bolster the findings and conclusions outlined in the main
text. It is organized as follows:

• Additional qualitative results.
• Data pre-processing method.
• Dataset details, regarding total quantity, total durations,

etc.
• Prompt refinement method.
• Motion VAE training.

Qualitative Comparisons
While the main text focuses on quantitative comparisons
with the motion-controllable video generation models and
ablation studies on different designs for TE and MGF, here
we provide further visual comparisons.

Compare with motion-controllable methods
Figure 6 provides a comparative analysis of our proposed
method against mainstream motion control techniques. In
the first scenario involving the coordinated movement of two
individuals, all methods manage to generate motion trajec-
tories that are relatively accurate. However, our approach

stands out for its superior visual quality. This advantage
is largely attributed to the use of longer sequence frames,
which contribute to smoother motion trajectories and more
realistic background rendering. For example, in our gener-
ated bicycle scenario, the human legs exhibit lifelike ped-
aling motions, while the output from DragNUWA shows
legs that appear to float almost horizontally, compromis-
ing physical realism. Moreover, both DragNUWA and Mo-
tionCtrl encounter significant motion blur towards the end
of their videos. Additionally, MotionCtrl introduces unin-
tended camera movements during the riding sequence, de-
spite the absence of any intended camera movement con-
ditions. In another instance, DragNUWA suffers from se-
vere deformation of the lantern as the provided trajectory
oscillates up and down. Although MotionCtrl’s trajectory is
relatively accurate, the resulting video does not align with
the expected portrayal of two lanterns. Overall, our method
not only adheres closely to the provided trajectories but also
minimizes object deformation, thereby ensuring higher fi-
delity in motion representation.

Compare with OpenSora
Despite OpenSora’s impressive accomplishments, it faces
challenges when creating long videos featuring complex
motions, such as simultaneous movement of multiple ob-
jects, swinging, or circling. This often leads to incoherent
or distorted foreground objects, negatively impacting vi-
sual quality. To our delight, we discovered that incorporat-
ing appropriate trajectory control into the DiT model of-
fers a more effective constraining signal. This improvement
markedly enhances video fluidity and preserves object fi-
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Prompt: Two jellyfish gracefully swimming underwater. The left
one moves upward while the right one moves downward.

Prompt: A teddy bear gently oscillating side to side on a skateboard. The scene is set against a picturesque, dreamy landscape, withdistant
trees silhouetted against a starry sky. Soft, twinkling lights from a nearby village or park create a magical ambiance, enhancing the 

whimsical charm of the teddy bear's playful ride.
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Prompt: A rose gracefully swirling in circular motions, captured
through a soft-focus lens, with the vibrant backdrop of a 

bustling city park.

Figure 7: Qualitative comparison between Tora and OpenSora. All results are generated under the same text and image condi-
tions. Tora employs an appropriate trajectory that simulates real-world physics, leading to more coherent and stable motion.

delity, as demonstrated in Figure 7.
In scenarios where a teddy bear is oscillating side to side

on a skateboard or a rose is swirling in circular motions,
OpenSora, which relies solely on textual directives for mo-
tion control, exhibits noticeable object deformations. In con-
trast, Tora excels at maintaining the inherent shape of the
objects. Additionally, when managing the motion of mul-
tiple entities, such as a pair of jellyfish—one moving up-
ward while the other moves downward, OpenSora demon-
strates noticeable flickering, underscoring its limitations in
handling complex movements. In conclusion, the integra-
tion of Tora’s motion signaling mechanism enhances both
the controllability and stability of the synthesized videos.

Comparison of Different Trajectory Compression
Methods
We train our proposed trajectory extractor using the various
trajectory compression methodologies previously discussed.
The comparisons of these methods are visually illustrated in

Figure 8.

In key-frame sampling, while it successfully captures es-
sential motion, it frequently leads to misalignment between
video patches and motion patches, especially during rapid
motion sequences. This misalignment hinders the generated
objects from accurately tracking their trajectories, negatively
impacting visual fluidity and overall quality. On the other
hand, average pooling smooths out minor variations, result-
ing in a more consistent motion representation. However, in
complex trajectories, such as S-shaped turns where consec-
utive frame directions are inconsistent, this approach may
introduce artifacts because the physical relevance of opti-
cal flow decreases. In contrast, our proposed 3D VAE ap-
proach effectively compresses trajectory information into
the video’s latent space. By training the 3D VAE on the large
dataset with flow annotations, it successfully extracts the
most relevant motion features for guidance, preserving the
movement of successive frames to a significant extent. As
evidenced in the results, this method significantly enhances
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Prompt: A red helium balloon floating slowly up to the sky over a desert.

Prompt: Feather floats gently down in a quiet meadow.

Figure 8: Generated videos employing different trajectory compression methods: (a) Sampling Keyframe; (b) Average Pooling;
(c) 3D VAE.

the fluidity and coherence of the generated movements, pro-
ducing visually compelling sequences that closely resemble
natural motion.

Data Pre-processing
During the processing of the video datasets, constructing a
high-quality training set is crucial as it significantly impacts
the quality of the generated videos. The following is a de-
tailed description of our data processing workflow, which
includes steps such as invalid videos removal, resolution fil-
tering, camera motion filtering, and assessing the degree of
object motion.

Initially, during the dataset preparation phase, we remove

invalid videos. This step aims to identify and discard videos
that do not meet our established criteria, including those
with encoding errors, a duration of zero, or low quality. We
identify encoding errors and zero-duration videos by directly
decoding them. Furthermore, we predict both the aesthetic
score4 and the optical flow score (Xu et al. 2023) for each
video. A video is deemed valid only if its aesthetic score
exceeds 5.5 and its flow score is greater than 2.

Next, we perform resolution filtering. To ensure the effec-
tiveness of subsequent study, we establish a minimum reso-

4https://github.com/christophschuhmann/improved-aesthetic-
predictor
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Figure 9: Overview of the training data distributions and batch sizes.

lution standard of 720p. By checking the resolution of each
video, we can eliminate those that fall below this threshold,
thereby ensuring that the videos in our dataset possess ade-
quate clarity and detail.

Subsequently, we perform camera motion filtering using
a camera motion detector5 and a motion segmentor (Zhao
et al. 2022) to filter out videos with significant camera move-
ment, which may distort the model’s ability to focus on
the motion of the primary subjects. More specifically, the
zoom detection threshold is set between 0.4 and 0.6. The
detected camera movement angles, calculated based on the
background from the motion segmentation results, are valid
as follows:[0◦, 20◦], [160◦, 200◦], [340◦, 360◦].

Finally, we analyze the magnitude score of the optical
flow within the foreground, excluding those scenes that are
mostly static or exhibit minimal movement. Moreover, dra-
matic object motions in some videos can cause significant
optical flow deviations, interfering with trajectory training.
Consequently, we retain these videos with a probability of
(1− score/100).

Through these rigorous filtering and processing steps, we
successfully construct a high-quality video dataset suitable
for subsequent training, providing a solid foundation for our
study.

Dataset Details
This section offers an overview of the dataset used in this
study, covering its origin and composition. We employ his-
tograms and descriptive statistics to illustrate the dataset’s
structure and distribution.

Training Data
The video data is sourced from the Panda-70M subset,
Mixart, and internal videos. We initially collect 2.6M videos
and apply the data preprocessing pipeline to filter the con-
tent, resulting in 631k eligible videos for training. An
overview of the training dataset is presented in Table 5,
which details the durations, resolution and FPS.

Additionally, Table 6 summarizes the mean and standard
deviation for the durations, number of frames, and caption
lengths. We also present histogram to show the distribution

5https://github.com/antiboredom/camera-motion-detector

# Videos Clips 631053
Total Durations (hours) 2952.93
Average Shorter Edge Length 965.11
Average FPS 29.23

Table 5: Statistical information about the training data.

of the caption lengths and the durations of all video clips, as
shown in the Figure 9a and Figure 9b.

mean std

Durations (seconds) 16.85 19.58
#Frames 506.22 644.38
Caption Length (#word) 125.52 24.22

Table 6: Statistics of training set, regarding durations, num-
ber of frames, and caption lengths.

Drawing inspiration from OpenSora, we employ a multi-
scale and mixed-duration training strategy, which involves
training videos of various resolutions and lengths together.
Specifically,we establish predefined buckets, each defined
by a unique combination of (video resolution, duration).
Videos are then assigned to the appropriate bucket accord-
ing to their specific attributes. Note that videos of any as-
pect ratio will fall into these buckets if their total pixel count
is within the specified statistical intervals. The parameter
settings for the buckets adhere to the principle that lower
resolutions correspond to longer durations, enabling Tora to
adapt to videos of varying lengths. Notably, our preprocess-
ing steps ensure that the shorter edge of each training video
exceeds 720 pixels. To enable training across various scales,
we shuffle the dataset and randomly select videos for down-
sampling to lower resolutions. Additionally, we employ dif-
ferent batch sizes for each bucket to balance the GPU load.
The details of the buckets are presented in Figure 9c.

Evaluation Data
Our evaluation dataset is primarily sourced from video ob-
ject segmentation datasets (Xu et al. 2021; Qi et al. 2022;



Figure 10: Visualization of Our Evaluation Dataset, highlighting 0%, 20%, 40%, 60%, 80%, and 100% of the total duration.
Each center point of the annotated object masks is treated as a trajectory point. The number of trajectories in the tested video
matches the number of annotated objects.

Pont-Tuset et al. 2017), which offer robust object motion
critical for our analysis. To enhance the quality of our evalu-
ation, we implement a camera motion filtering technique to
select videos where the camera remains predominantly sta-
ble. This filtering process allows us to concentrate on where
object motion is distinctly pronounced, thereby improving
the reliability of our assessments. For each frame, we utilize
the center of the annotated object masks as trajectory points,
providing precise references for evaluating motion dynam-
ics. Figure 10 presents several examples from our evalua-
tion dataset, highlighting the diversity and relevance of the
selected video sequences.

Prompt Refinement
We encourage users to provide detailed text prompts to
achieve satisfactory video results. To ensure consistency in
the distribution of text prompts during both training and
testing phases, we utilize GPT-4o to refine simple testing
prompts. The process of learning refined prompts for GPT-
4o involves two key components. The first component is the
task description, which clearly outlines the objectives for the
model in generating enhanced content:
You need to refine user’s input

prompt. The user’s input prompt is used
for video generation task. You need
to refine the user’s prompt to make it

more suitable for the task. Here are
some examples of refined prompts: ↓
a close-up shot of a woman applying
makeup. she is using a black brush to
apply a dark powder to her face. the
woman has blonde hair and is wearing
a black top. the background is black,
which contrasts with her skin tone and
the makeup. the focus is on her face
and the brush, with the rest of her
body and the background being out of
focus. the lighting is soft and even,
highlighting the texture of the makeup
and the woman’s skin. there are no
texts or other objects in the video.
the woman’s expression is neutral,
and she is looking directly at the
camera. the video does not contain
any action, as it is a still shot of
a woman applying makeup. the relative
position of the woman and the brush is
such that the brush is in her hand and
is being used to apply the makeup to
her face. the video does not contain
any other objects or actions. the woman
is the only person in the video, and
she is the main subject. the video does



not contain any sound. the description
is based on the visible content of
the video and does not include any
assumptions or interpretations. ↓
a professional setting where a woman is
presenting a slide from a presentation.
she is standing in front of a projector
screen, which displays a bar chart.
the chart is colorful, with bars of
different heights, indicating some
sort of data comparison. the woman
is holding a pointer, which she uses
to highlight specific parts of the
chart. she is dressed in a white
blouse and black pants, and her hair
is styled in a bun. the room has a
modern design, with a sleek black floor
and a white ceiling. the lighting is
bright, illuminating the woman and
the projector screen. the focus of the
image is on the woman and the projector
screen, with the background being out
of focus. there are no texts visible
in the image. the relative positions of
the objects suggest that the woman is
the main subject of the image, and the
projector screen is the object of her
attention. the image does not provide
any information about the content of
the presentation or the context of the
meeting. ↓
a serene scene in a park. the sun is
shining brightly, casting a warm glow
on the lush green trees and the grassy
field. the camera is positioned low,
looking up at the towering trees, which
are the main focus of the image. the
trees are dense and full of leaves,
creating a canopy of green that fills
the frame. the sunlight filters through
the leaves, creating a beautiful
pattern of light and shadow on the
ground. the overall atmosphere of the
video is peaceful and tranquil, evoking
a sense of calm and relaxation. ↓
a moment in a movie theater. a couple
is seated in the middle of the theater,
engrossed in the movie they are
watching. the man is dressed in a
casual outfit, complete with a pair of
sunglasses, while the woman is wearing
a cozy sweater. they are seated on a
red theater seat, which stands out
against the dark surroundings. the
theater itself is dimly lit, with the
screen displaying the movie they are
watching. the couple appears to be
enjoying the movie, their attention
completely absorbed by the on-screen

action. the theater is mostly empty,
with only a few other seats visible
in the background. the video does not
contain any text or additional objects.
the relative positions of the objects
are such that the couple is in the
foreground, while the screen and the
other seats are in the background. the
focus of the video is clearly on the
couple and their shared experience of
watching a movie in a theater. ↓
a scene where a person is examining a
dog. the person is wearing a blue shirt
with the word "volunteer" printed on
it. the dog is lying on its side, and
the person is using a stethoscope to
listen to the dog’s heartbeat. the dog
appears to be a golden retriever and
is looking directly at the camera. the
background is blurred, but it seems
to be an indoor setting with a white
wall. the person’s focus is on the
dog, and they seem to be checking its
health. the dog’s expression is calm,
and it seems to be comfortable with the
person’s touch. the overall atmosphere
of the video is calm and professional. ↓
The refined prompt should pay attention
to all objects in the video. The
description should be useful for
AI to re-generate the video. The
description should be no more than six
sentences. The refined prompt should be
in English.

Following that, GPT-4o is supplied with the testing cap-
tions for processing. This allows it to refine the prompts
based on the initial task description, ensuring that the pro-
vided captions are more detailed and aligned with our ob-
jectives:
Generate the refined prompts for

following inputs: ↓
A man rides on a huge fish, flying from
the water into the sky. ↓
Two Jedi cats are fighting with each
other in the forest. ↓
A polar bear with a black hat is
walking on the Great Wall. ↓
A woman and a golden retriever are
playing on the beach at sunset. ↓
Two roses sway together before a
snow-covered mountain range.

Motion VAE Training
Given the absence of pre-existing networks tailored for
video optical flow compression, training such a network
from scratch presents significant challenges. Directly trans-
ferring the motion vectors to the image domain and applying
a pretrained 3D VAE may hinder the model’s ability to ef-
fectively encode motion features, primarily due to domain



discrepancies. To overcome this issue, we refine a motion-
specific 3D VAE that is initialized from a pretrained model.
Specifically, our motion 3D VAE is specifically initialized
using the architecture of OpenSora’s VAE, which adapts the
structure of Magvit-v2. This VAE has a substantial param-
eter count of 384 million, effectively leveraging the capa-
bilities of a well-established network. Our training data is
sourced from a combination of datasets annotated with op-
tical flow information (Mehl et al. 2023; Mayer et al. 2016;
Ranjan et al. 2020; Cabon, Murray, and Humenberger 2020).
We fine-tune the motion 3D VAE for 200,000 iterations with
a batch size of 1. The training video size is set to a ran-
dom number of frames, capped at 34. This setting aligns
with the OpenSora video VAE, improving compatibility be-
tween the motion VAE and the video VAE and ensuring a
cohesive training process. We utilize PSNR, SSIM and tra-
jectory error to evaluate reconstruction quality and motion-
controllable ability. The performance differences between
the pure video VAE and our fine-tuned model are presented
in Table 7.

Model PSNR↑ SSIM↑ TrajError↓
Pure Video VAE 27.34 0.842 17.09

Our VAE 28.76 0.860 14.25

Table 7: The performance comparison of different 3D VAE.
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